A dynamic model of annual foliage growth and carbon uptake in trees

نویسندگان

  • A. C. Fowler
  • Oliver Clary
  • Tiina Roose
چکیده

The growth of trees and other plants occurs through the interactive combination of photosynthesis and carbon (and other nutrient) assimilation. Photosynthesis enables the production of carbohydrate that can then be used in growing foliage, whereby photosynthesis is enabled. We construct a mathematical model of carbon uptake and storage, which allows the prediction of the growth dynamics of trees. We find that the simplest model allows uncontrolled foliage production through the positive feedback outlined above, but that leaf shading provides an automatic saturation to carbon assimilation, and hence to foliage production. The model explains the necessity for finite leaf area production at outbreak, and it explains why foliage density reaches a constant value during a growing season, while also non-leaf tissue also continues to grow. It also explains why trees will die when their carbon stores are depleted below a certain threshold, because the cost of foliage growth and maintenance exceeds the dynamic supply of carbon by photosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive effects of fertilization and throughfall exclusion on the physiological responses and whole-tree carbon uptake of mature loblolly pine

Few studies have examined the combined effects of nutrition and water exclusion on the canopy physiology of mature loblolly pine (Pinus taeda L.). Understanding the impacts of forest management on plantation productivity requires extensive research on the relationship between silvicultural treatments and environmental constraints to growth. We studied the physiological responses of 18-year-old ...

متن کامل

Measuring and simulating crown respiration of Scots pine with increased temperature and carbon dioxide enrichment.

Acclimation to elevated atmospheric carbon dioxide concentration and temperature of respiration by the foliage in the crown of Scots pine (Pinus sylvestris) trees is measured and modelled. Starting in 1996, individual 20-year-old trees were enclosed in chambers and exposed to either normal ambient conditions (CON), elevated CO2 concentration (EC), elevated temperature (ET) or a combination of E...

متن کامل

Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?

Photosynthesis is highly responsive to environmental and physiological variables, including phenology, foliage nitrogen (N) content, atmospheric CO2 concentration ([CO2]), irradiation (Q), air temperature (T) and vapour pressure deficit (D). Each of these responses is likely to be modified by long-term changes in climatic conditions such as rising air temperature and [CO2]. When modelling photo...

متن کامل

Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis

Experimental evidence indicates that the stomatal conductance and nitrogen concentration ([N]) of foliage decline under CO2 enrichment, and that the percentage growth response to elevated CO2 is amplified under water limitation, but reduced under nitrogen limitation. We advance simple explanations for these responses based on an optimisation hypothesis applied to a simple model of the annual ca...

متن کامل

Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees.

BACKGROUND AND AIMS The carbon (C) balance of boreal terrestrial ecosystems is sensitive to increasing temperature, but the direction and thresholds of responses are uncertain. Annual C uptake in Picea and other evergreen boreal conifers is dependent on seasonal- and cohort-specific photosynthetic and respiratory temperature response functions, so this study examined the physiological significa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2009